

全球气候变化及不同空间尺度碳循环研究方法

Liukang Xu

February 24–27, 2025 Tucson, Arizona, USA

Register Already registered?

Topics

- Evidences: Global warming and climate change
- Ecosystem response to climate change and global warming
 - FACE
 - Warming
 - Precipitation manipulation
- Carbon cycle study
 - GAW
 - GHG and energy flux measurement (leaf level, soil surface, ecosystem level)
 - Remote sensing (SIF)
 - Isotope
- Mitigation strategies

Climate change in daily news

SEARCH

FORTUNE

Subscribe Now

SIGN IN

ENVIRONMENT · CLIMATE CHANGE

In just 8 years, Maine's lobster haul has lost nearly 40 million pounds per year: 'There's no question climate change is affecting it'

BY <u>PATRICK WHITTLE</u> AND <u>THE ASSOCIATED PRESS</u> March 1, 2024 at 12:50 PM CST

Laboration fronte and falling

Climate change in daily news

Ocean temperature hit record high in February 2024, EU scientists say

By Gloria Dickie

March 7, 2024 3:01 AM CST · Updated 7 min ago

Aa

<

Menu

Home / News Portal / Media Releases / WMO confirms that 2023 smashes global temperature

WMO confirms that 2023 smashes global temperature record

PRESS RELEASE

12 January 2024

The World Meteorological Organization (WMO) has officially confirmed that 2023 is the warmest year on record, by a huge margin.

Key messages

Evidences of global warming:

Observed change in surface temperature 1901-2012

(a) Change in global surface temperature (decadal average) as **reconstructed** (1–2000) and **observed** (1850–2020)

Michael Mann, professor of atmospheric science at the Pennsylvania State University, and author of 'The New Climate War' (Sydney Herdle)

Evidences of global warming: Glacier retreat

Muir and Riggs Glaciers, Alaska. August 13, 1941; August 4, 1950; and August 31, 2004.

Credits: 1941 and 1950 photographs by William O. Field, NSIDC and Glacier Bay National Park and Preserve Archive. 2004 photograph by Bruce F. Molnia, USGS.

Observed change in sea level 1993-2022

NOAA Climate.gov Data: UHSLC

Evidences of Global Warming: Hydrological Cycle Disrupted

Nature China drought highlights future clima...

The Guardian China sends emergency food to drought ... China drought leaves m...

Reuters Environment watch

B Home - BBC News - BBC Severe drought hits south-west .

Drought continues to ravage southwes...

4 China.org Severe drought in SW China makes no ...

China Briefing Northern China suffers through worst ...

Phys.org

∳ Council on Foreign Relations Water Woes and Worries in China ...

Phys.org drought may have serious global im...

The New York Times China Drought Prompts U.N. to Issue ...

R[®] ResearchGate drought frequency in China fro...

Inside Climate News

w Wikipedia Drought Turns Southern China... 2010 China drought and dust storm

The Guardian China crisis over Yangtze river drought ...

G Facts and Details DROUGHTS IN CHINA | Facts and ...

▶ East Asia Forum China and climate change in the post ...

Phys.org Central China drought worst in over 50 ...

4 China.org Drought ravages southwest, north Chin...

Shaktichakra, the wheel of energies - W... drought of south-west China in pictu...

MBC News China drills wells, se ...

Hydrological Cycle Disrupted

Flooding in China 2024 Summer

w Wikipedia

2024 Guangdong floods - Wikipedia

w The Washington Post CNN Heavy rains batter Chinese provin. deadly rains lash southern China

South China Morning Post

floods and droughts grip parts of Chin ...

Washington Post Guangdong braces for historic floods ...

90

80

(qm)

🚺 Al Jazeera Highest-level rainstorm warning is...

YouTube

III Le Monde rainstorm warning issued in southe.

- South China Flooded: What's Happening?
- YouTube China's deadly flooding moves no .. China Flood 2024: Severe Ra.

Southern China: Massive floods t ...

CNN

Reuters Floods swamp southern China, spark ...

a Sky News China floods: Four dead as cities ...

we The Washington Post China wakes to climate change threat a ...

G Global Times China raises flood emergency response

CNN

18 News18 China Warns Residents In Southern Par...

¥ The Watchers News flood warning issued for Guangdong ...

ERUPTS

10 evidences of global warming

Atmospheric CO₂, CH₄, N₂O growth trend

THE GREENHOUSE EFFECT

Shortwave

Some solar radiation is reflected by Earth and the atmosphere

gases and re-emitted in all directions Atmosphere

Longwave

by the atmosphere. The effect of this is to warm Earth's surface and the lower atmosphere.

Some of the infrared radiation

passes through the atmosphere.

Some is absorbed by greenhouse

Earth's Surface

Some radiation is absorbed by Earth's surface and warms it

Infrared radiation is emitted by Earth's surface

Are climate change and global warming real?

Just a hoax ? Weather or Climate? Or too many other crises going on?

Different response of social society to some discoveries of earth science

- Theory of Evolution: 1860s
- Theory of the Ice Ages: 1900s
- Theory of Plate Tectonics: 1960s
- Theory of Ozone Layer Depletion (because of CFC)
- Theory of Global Warming: 2000s

Is the global warming due to human influence or natural variation?

Significance

Major Greenhouse Gases

Greenhouse Gas	Current Atmospheric Concentration	Atmospheric Lifetime (year)	Global Warming Potential (全球增温潜势)	Radiative Forcing (W m ⁻²) (辐射强迫)
CO ₂	405 ppm	50-200	1	1.66
CH ₄	1852 ppb	12±3	21	0.48
N ₂ O	328 ppb	120	310	0.16

Significance

Global CO₂ Sources

100% anthropogenic

Quere et al., 2014. Earth System Science Data Discussion

Production

Dlugokencky et al., 2012. Philosophical Transactions of the Royal Society A

GHG cycle study

- What are the sources, sinks of CO₂, CH₄, N₂O (库和源)?
- Atmospheric CO₂, CH₄, N₂O trend (变化趋势)?
- What kind of impact on climate and ecosystem, esp for the case of CO₂ (影响)?
- What are the factors that regulate these source and sink strength (调控)?
- Research approach (研究方法)
 - Atmospheric background, like Global Atmosphere Watch of WMO
 - Remote sensing, large scale modeling
 - Ecosystem level study
 - Isotope
- Mitigation strategies (应对措施)

GtC=10⁹ tonnes C

Atmospheric CO₂, CH₄, N₂O trend (变化趋势)?

GAW (Global Atmosphere Watch Program)

Atmospheric CO₂, CH₄, N₂O trend (变化趋势)?

GAW (Global Atmosphere Watch Program)

Gas Species	Inter-lab comparability
CO_2	± 0.1 ppm (± 0.05 ppm in southern Hemisphere)
δ^{13} C-CO ₂	± 0.01 per mil
CH ₄	$\pm 2 \text{ ppb}$
CO	$\pm 2 \text{ ppb}$
N ₂ O	$\pm 0.1 \text{ ppb}$
H ₂	± 2 ppb

14th WMO/IAEA meeting of experts on carbon dioxide, other greenhouse gases and related tracer measurement techniques

What kind of impact on climate and ecosystem, esp for the case of CO2 (影响)?

Manipulation of precipitation (rainfall event size and frequency) experiment

At Sevilleta LTER, New Mexico

Soil Warming Experiment: Harvard Forest LTER Station

FACE Program,

FACE and Warming Program,

SPRUCE exp (Warmed enclosure vs. Ambient enclosure), Northern Minnesota

Flux measurement at leaf level:

Flux measurement at leaf level:

 $E = \frac{u_o W_o - u_i W_i}{s}$ $A = \frac{u_i C_i - u_o C_o}{s}$

S: leaf area (cm²) E: transpiration (mmol m⁻²s⁻¹) u: flow rate (μ mol s⁻¹) W: concentration of water vapor (mmol mol⁻¹) A: carbon assimilation (μ mol m⁻²s⁻¹) C: concentration of CO₂ (μ mol mol⁻¹)

Stomata conductance, g_s,

 $V_{cmax}, J_{max},$

 F_{1}/F_{m} ,

Flux measurement across soil surface

$$F_{CO2} = \frac{VP_o(1 - W_o)}{RS(T_o + 273.15)} \frac{dC}{dt}$$

V:	Chamber volume	m ³
P_o :	Pressure	Pa
<i>R</i> :	Gas constant	Pa m ³ k ⁻¹ mol ⁻¹
<i>S</i> :	Soil area	m^2
T_o :	Initial temperature	°C
$\frac{dC}{dt}$	Slope	µmol mol ⁻¹ s ⁻¹
W_{o}	Initial H ₂ O	mol mol ⁻¹
F_{CO2} :	Flux	µmol m ⁻² s ⁻¹

Flux measurement at leaf level:

Automated and Long-term system (LI-8250)

LI-COR Confidential

Advantage of automated and continuous measurement:

• Can have fine temporal variation

Flux measurement across soil surface:

Advantages of chamber method

- 1. Simple theory
- 2. Can measure very small flux (depend on volume to area ratio, precision of the gas analyzer)
- 3. Relatively easier to process the data
- 4. Can be used over small plots
- 5. Can be used over a wide range of field topography

Flux measurement at field scale: Eddy Covariance (EC) Method

Flux measurement at field scale: Eddy Covariance (EC) Method

18000

 $F = \overline{w'c'} = \frac{1}{18000} \sum_{i=1}^{10000} (w - \overline{w})(c - \overline{c})$

Instrument height (m)	Radius (m)	Footprint area (ha)
2	200	12.6
10	1000	314.2
20	2000	1256.8
50	5000	7854.0

Flux measurement at field scale: Eddy Covariance (EC) Method

Advantages over other methods

- Direct measurement of the flux density
- in situ
- No disturbance to your system
- Continuous
- Represents a large area in the upwind direction

Research areas (机理)

• NEE, ET = f(PAR, diffuse radiation, temperature, soil moisture, rain pulse, and other environmental variables)

 NEE, ET = f(elevation gradient, land use, plant functional type, length of growing season, drought, disturbance of fire, logging and thinning, forest age, insect infestation)

• CH₄ and N₂O ecosystem budget, fish farms, lake, river etc

• Crop field carbon sequestration potential, deserts

Flux= f (precipitation, temperature, soil moisture, VPD, fpar, diffuse radiation, LAI, vegetation type, SIF, etc.,)

Remote sensing

Fig. 4 SIF monthly average from July 2016 using data from the Orbiting Carbon Observatory-2. The corn belt in the United States can be clearly observed as a dominant feature, as was initially reported by Guanter et al. (2007).

Frankenberg and Berry, 2018

Need to explain this plot

The more and more negative in δ^{13} C proves that the atmospheric CO₂ concentration increase is due to the release of CO₂ from burning of fossil fuel.

Mitigation strategies (government):

- 1. Plant more trees?
 - Water and nutrient limitation
 - Land limitation
- 2. Carbon capture and storage
 - Inject CO₂ underground
- 3. Cut emission
 - More efficient transportation, Heating/AC
- 4. EV
 - Depends on how the electricity is generated?
- 5. Solar power, wind, nuclear energy
 - More efficient than biofuel
- 6. Cut emission of CO_2 , CH_4 and N_2O

Topics covered today

- Evidences: Global warming and climate change
- Ecosystem response to climate change and global warming
 - FACE
 - Warming
 - Manipulate precipitation
- Carbon cycle study
 - GHG and energy flux measurement(leaf level, soil surface, canopy)
 - Remote sensing, e.g. SIF
 - Isotope
- Mitigation strategies

谢谢大家

Q&A

